Class IncrementalRendererState

The incremental renderer state is a kind of floaty renderer state in which ontology's diagrams are used only to compute what to show. There is only a single empty diagram and any render() call just render the same diagram no matter what was the input diagram.

This renderer state is logic agnostic, meaning that it does not control what to show and when. You can decide what to show/hide outside, based on lifecycle and/or other custom developed widgets.

Hierarchy

Constructors

Properties

_layout: Layouts
_renderer: Renderer
automoveOptions: {
    dragWith: string;
    nodesMatching: ((node: NodeSingular) => undefined | boolean);
    reposition: string;
} = ...

Type declaration

  • dragWith: string
  • nodesMatching: ((node: NodeSingular) => undefined | boolean)
      • (node: NodeSingular): undefined | boolean
      • Parameters

        • node: NodeSingular

        Returns undefined | boolean

  • reposition: string
filterManager: iFilterManager = ...
id: INCREMENTAL = RendererStatesEnum.INCREMENTAL
layoutRunning: boolean = false
previousDiagram: Diagram

Accessors

  • get defaultLayoutOptions(): {
        avoidOverlap: boolean;
        centerGraph: boolean;
        edgeLength: ((edge: EdgeSingular) => number);
        fit: boolean;
        handleDisconnected: boolean;
        infinite: boolean;
        maxSimulationTime: number;
        name: string;
    }
  • Returns {
        avoidOverlap: boolean;
        centerGraph: boolean;
        edgeLength: ((edge: EdgeSingular) => number);
        fit: boolean;
        handleDisconnected: boolean;
        infinite: boolean;
        maxSimulationTime: number;
        name: string;
    }

    • avoidOverlap: boolean
    • centerGraph: boolean
    • edgeLength: ((edge: EdgeSingular) => number)
        • (edge: EdgeSingular): number
        • Parameters

          • edge: EdgeSingular

          Returns number

    • fit: boolean
    • handleDisconnected: boolean
    • infinite: boolean
    • maxSimulationTime: number
    • name: string

Methods